Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 10 de 10
Фильтр
1.
Front Microbiol ; 14: 1160196, 2023.
Статья в английский | MEDLINE | ID: covidwho-20232030
2.
Comput Struct Biotechnol J ; 20: 4351-4359, 2022.
Статья в английский | MEDLINE | ID: covidwho-1977173

Реферат

The COVID-19 associated opportunistic fungal infections have posed major challenges in recent times. Global scientific efforts have identified several SARS-CoV2 host-pathogen interactions in a very short time span. However, information about the molecular basis of COVID-19 associated opportunistic fungal infections is not readily available. Previous studies have identified a number of host targets involved in these opportunistic fungal infections showing association with COVID-19 patients. We screened host targets involved in COVID-19-associated opportunistic fungal infections, in addition to host-pathogen interaction data of SARS-CoV2 from well-known and widely used biological databases. Venn diagram was prepared to screen common host targets involved in studied COVID-19-associated fungal infections. Moreover, an interaction network of studied disease targets was prepared with STRING to identify important targets on the basis of network biological parameters. The host-pathogen interaction (HPI) map of SARS-CoV2 was also prepared and screened to identify interactions of the virus with targets involved in studied fungal infections. Pathway enrichment analysis of host targets involved in studied opportunistic fungal infections and the subset of those involved in SARS-CoV2 HPI were performed separately. This data-based analysis screened six common targets involved in all studied fungal infections, among which CARD9 and CYP51A1 were involved in host-pathogen interactions with SARS-CoV2. Moreover, several signaling pathways such as integrin signaling were screened, which were associated with disease targets involved in SARS-CoV2 HPI. The results of this study indicate several host targets deserving detailed investigation to develop strategies for the management of SARS-CoV2-associated fungal infections.

4.
AMB Express ; 12(1): 60, 2022 May 23.
Статья в английский | MEDLINE | ID: covidwho-1862147

Реферат

The increasing multidrug-resistance in pathogenic microbes and the emergence of new microbial pathogens like coronaviruses have necessitated the discovery of new antimicrobials to treat these pathogens. The use of antibiotics began after the discovery of penicillin by Alexander Fleming from Penicillium chrysogenum. This has attracted the scientific community to delve deep into the antimicrobial capabilities of various fungi in general and Phoma spp. in particular. Phoma spp. such as Phoma arachidicola, P. sorghina, P. exigua var. exigua, P. herbarum, P. multirostrata, P. betae, P. fimeti, P. tropica, among others are known to produce different bioactive metabolites including polyketides, macrosporin, terpenes and terpenoids, thiodiketopiperazines, cytochalasin derivatives, phenolic compounds, and alkaloids. These bioactive metabolites have already demonstrated their antimicrobial potential (antibacterial, antifungal, and antiviral) against various pathogens. In the present review, we have discussed the antimicrobial potential of secondary metabolites produced by different Phoma species. We have also deliberated the biogenic synthesis of eco-friendly antimicrobial silver nanoparticles from Phoma and their role as potential antimicrobial agents.

5.
Molecules ; 27(5)2022 Feb 24.
Статья в английский | MEDLINE | ID: covidwho-1780062

Реферат

Diseases caused by viruses are a global threat, resulting in serious medical and social problems for humanity. They are the main contributors to many minor and major outbreaks, epidemics, and pandemics worldwide. Over the years, medicinal plants have been used as a complementary treatment in a range of diseases. In this sense, this review addresses promising antiviral plants from Marajó island, a part of the Amazon region, which is known to present a very wide biodiversity of medicinal plants. The present review has been limited to articles and abstracts available in Scopus, Web of Science, Science Direct, Scielo, PubMed, and Google Scholar, as well as the patent offices in Brazil (INPI), United States (USPTO), Europe (EPO) and World Intellectual Property Organization (WIPO). As a result, some plants from Marajó island were reported to have actions against HIV-1,2, HSV-1,2, SARS-CoV-2, HAV and HBV, Poliovirus, and influenza. Our major conclusion is that plants of the Marajó region show promising perspectives regarding pharmacological potential in combatting future viral diseases.


Тема - темы
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Brazil , COVID-19/virology , HIV-1/drug effects , Hepatitis A virus/drug effects , Herpesvirus 1, Human/drug effects , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants, Medicinal/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
6.
Int J Mol Sci ; 22(24)2021 Dec 18.
Статья в английский | MEDLINE | ID: covidwho-1580689

Реферат

Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.


Тема - темы
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple/drug effects , Glucans/biosynthesis , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Antifungal Agents , COVID-19 , Chitin/pharmacology , Chitosan/chemistry , Drug Resistance, Multiple/physiology , Food Packaging , Glucans/metabolism , Glucans/pharmacology , Humans , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nisin/pharmacology , Polymers/chemistry , SARS-CoV-2
7.
Microb Ecol ; 2021 Nov 04.
Статья в английский | MEDLINE | ID: covidwho-1504180

Реферат

COVID-19 caused a global catastrophe with a large number of cases making it one of the major pandemics of the human history. The clinical presentations of the disease are continuously challenging healthcare workers with the variation of pandemic waves and viral variants. Recently, SARS-CoV2 patients have shown increased occurrence of invasive pulmonary aspergillosis infection even in the absence of traditional risk factors. The mechanism of COVID-19-associated aspergillosis is not completely understood and therefore, we performed this system biological study in order to identify mechanistic implications of aspergillosis susceptibility in COVID-19 patients and the important targets associated with this disease. We performed host-pathogen interaction (HPI) analysis of SARS-CoV2, and most common COVID-19-associated aspergillosis pathogen, Aspergillus fumigatus, using in silico approaches. The known host-pathogen interactions data of SARS-CoV2 was obtained from BIOGRID database. In addition, A. fumigatus host-pathogen interactions were predicted through homology modeling. The human targets interacting with both pathogens were separately analyzed for their involvement in aspergillosis. The aspergillosis human targets were screened from DisGeNet and GeneCards. The aspergillosis targets involved in both HPI were further analyzed for functional overrepresentation analysis using PANTHER. The results indicate that both pathogens interact with a number of aspergillosis targets and altogether they recruit more aspergillosis targets in host-pathogen interaction than alone. Common aspergillosis targets involved in HPI with both SARS-CoV2 and A. fumigatus can indicate strategies for the management of both conditions by modulating these common disease targets.

8.
Viruses ; 13(7)2021 06 24.
Статья в английский | MEDLINE | ID: covidwho-1289018

Реферат

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health problem that the WHO declared a pandemic. COVID-19 has resulted in a worldwide lockdown and threatened to topple the global economy. The mortality of COVID-19 is comparatively low compared with previous SARS outbreaks, but the rate of spread of the disease and its morbidity is alarming. This virus can be transmitted human-to-human through droplets and close contact, and people of all ages are susceptible to this virus. With the advancements in nanotechnology, their remarkable properties, including their ability to amplify signal, can be used for the development of nanobiosensors and nanoimaging techniques that can be used for early-stage detection along with other diagnostic tools. Nano-based protection equipment and disinfecting agents can provide much-needed protection against SARS-CoV-2. Moreover, nanoparticles can serve as a carrier for antigens or as an adjuvant, thereby making way for the development of a new generation of vaccines. The present review elaborates the role of nanotechnology-based tactics used for the detection, diagnosis, protection, and treatment of COVID-19 caused by the SARS-CoV-2 virus.


Тема - темы
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/diagnosis , Nanotechnology/methods , Nanotechnology/trends , Biosensing Techniques/methods , COVID-19/prevention & control , COVID-19 Vaccines , Communicable Disease Control/methods , Global Health , Humans
9.
Virusdisease ; 32(1): 1-12, 2021 Mar.
Статья в английский | MEDLINE | ID: covidwho-1107895

Реферат

The COVID-19 pandemic has elicited a rapid response from the scientific community with significant advances in understanding the causative pathogen (SARS-CoV-2). Mechanisms of viral transmission and pathogenesis, as well as structural and genomic details, have been reported, which are essential in guiding containment, treatment, and vaccine development efforts. Here, we present a concise review of the recent research in these domains and an exhaustive analysis of the genomic origins of SARS-CoV-2. Particular emphasis has been placed on the pathology and disease progression of COVID-19 as documented by recent clinical studies, in addition to the characteristic immune responses involved therein. Furthermore, we explore the potential of nanomaterials and nanotechnology to develop diagnostic tools, drug delivery systems, and personal protective equipment design within the ongoing pandemic context. We present this as a ready resource for researchers to gain succinct, up-to-date insights on SARS-CoV-2.

10.
Expert Rev Anti Infect Ther ; 20(10): 1299-1308, 2022 10.
Статья в английский | MEDLINE | ID: covidwho-915834

Реферат

INTRODUCTION: COVID-19 pandemic has been declared as a global emergency by the World Health Organization which has mounted global pressure on the healthcare system. The design and development of rapid tests for the precise and early detection of infection are urgently needed to detect the disease and also for bulk screening of infected persons. The traditional drugs moderately control the symptoms, but so far, no specific drug has been discovered. The prime concern is to device novel tools for rapid and precise diagnosis, drug delivery, and effective therapies for coronavirus. In this context, nanotechnology offers novel ways to fight against COVID-19. AREA COVERED: This review includes the use of nanomaterials for the control of COVID-19. The tools for diagnosis of coronavirus, nano-based vaccines, and nanoparticles as a drug delivery system for the treatment of virus infection have been discussed. The toxicity issues related to nanoparticles have also been addressed. EXPERT OPINION: The research on nanotechnology-based diagnosis, drug delivery, and antiviral therapies is at a preliminary stage. The antiviral nanomedicine therapies are cost-effective and with high quality. Nanoparticles are a promising tool for prevention, diagnosis, antiviral drug delivery, and therapeutics, which may open up new avenues in the treatment of COVID-19.


Тема - темы
COVID-19 , Antiviral Agents/therapeutic use , Humans , Nanotechnology , Pandemics/prevention & control , SARS-CoV-2
Критерии поиска